Nanoscale

The Copéret group develops and applies tailored organometallic precursors for the synthesis of monodispersed supported metal nanoparticles for applications in heterogeneous catalysis.

We investigate and compare three methodologies: classical impregnation, two-step grafting/post-treatment and colloid approaches.

Classical impregnation. Impregnating inorganic precursor including organometallic compounds onto tailored supports followed by post-treatment allows for the formation of narrowly dispersed small (1-2 nm) nanoparticles, which are typically active in a broad range of applications, e.g. hydrogenation, methanation1 and dry reforming.2,3

Grafting approach. Grafting tailored organometallic precursor onto silica or alumina surface allows for a precise control over the reaction stoichiometry and metal site density. After post-treatment under H2, narrowly dispersed and small nanoparticles are generated, for which the metal-support interface can even be controlled: e.g., metal siloxides grafted on alumina generate metal nanoparticles on surface aluminosilicate.4

Colloidal approach. Colloidal solutions can be prepared from organometallic precursors and then dispersed onto a support. This approach allows a better controlled of the particle size distribution and composition: e.g. 2-nm nickel−silicide nanoparticles from Ni(COD)2 and octylsilane can be prepared and dispersed on silica at low temperature, which generates highly active and stable catalyst for dry reforming.5

References

(1)       Furman, K.; Baudouin, D.; Margossian, T.; Sabnis, K. D.; Cui, Y.; Ribeiro, F. H.; Copéret, C. Journal of Catalysis 2015, 324, 9.

(2)       Baudouin, D.; Rodemerck, U.; Krumeich, F.; Mallmann, A. d.; Szeto, K. C.; Ménard, H.; Veyre, L.; Candy, J.-P.; Webb, P. B.; Thieuleux, C.; Copéret, C. Journal of Catalysis 2013, 297, 27.

(3)       Baudouin, D.; Margossian, T.; Rodemerck, U.; Webb, P. B.; Veyre, L.; Krumeich, F.; Candy, J.-P.; Thieuleux, C.; Copéret, C. ChemCatChem 2016, n/a.

(4)       Héroguel, F.; Siddiqi, G.; Detwiler, M. D.; Zemlyanov, D. Y.; Safonova, O. V.; Copéret, C. Journal of Catalysis 2015, 321, 81.

(5)       Baudouin, D.; Szeto, K. C.; Laurent, P.; De Mallmann, A.; Fenet, B.; Veyre, L.; Rodemerck, U.; Copéret, C.; Thieuleux, C. J. Am. Chem. Soc. 2012, 134, 20624.

JavaScript has been disabled in your browser